Scheduling for Better Energy Efficiency on Many-Core Chips

نویسندگان

  • Chanseok Kang
  • Seungyul Lee
  • Yong-Jun Lee
  • Jaejin Lee
  • Bernhard Egger
چکیده

Many-core chips are especially attractive for data center operators providing cloud computing service models. With the advance of many-core chips in such environments energy-conscious scheduling of independent processes or operating systems (OSes) is gaining importance. An important research question is how the scheduler of such a system should assign the cores to the OSes in order to achieve a better energy utilization. In this paper, we demonstrate that many-core chips offer new opportunities for extremely light-weight migration of independent processes (or OSes) running bare-metal on the many-core chip. We then show how this intra-chip migration can be utilized to achieve a better performance per watt ratio by implementing a hierarchical power-management scheme on top of dynamic voltage and frequency scaling (DVFS). We have implemented and tested the proposed techniques on the Intel Single Chip Cloud Computer (SCC). Combining migration with DVFS we achieve, on average, a 25-35% better performance per watt over a DVFS-only solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory-aware Scheduling for Energy Efficiency on Multicore Processors

Memory bandwidth is a scarce resource in multicore systems. Scheduling has a dramatic impact on the delay introduced by memory contention, but also on the effectiveness of frequency scaling at saving energy. This paper investigates the cross-effects between tasks running on a multicore system, considering memory contention and the technical constraint of chip-wide frequency and voltage settings...

متن کامل

Toward Efficient Fine-grained Dynamic Scheduling on Many-Core Architectures

The recent evolution of many-core architectures has resulted in chips where the number of processor elements (PEs) are in the hundreds and continue to increase every day. In addition, many-core processors are more and more frequently characterized by the diversity of their resources and the way the sharing of those resources is arbitrated. On such a machine, task scheduling is of paramount impo...

متن کامل

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

Adaptive Space-Shared Scheduling for Shared-Memory Parallel Programs

Space-sharing is regarded as the proper resource management scheme for many-core OSes. For today’s many-core chips and parallel programming models providing no explicit resource requirements, an important research problem is to provide a proper resource allocation to the running applications while considering not only the architectural features but also the characteristics of the parallel appli...

متن کامل

Load Tuning for Solar Energy Powered Embedded System Using ILP

In this paper direct-coupled solar energy powered multicore architectures that provide direct power supply between photovoltaic (PV) generation and the load without the adoption of battery. We present SolarTune, a real-time scheduling technique with load tuning for sporadic tasks on solar energy powered multicore systems. The objective is to fully utilize the available solar energy while meetin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015